M447 - Mathematical Models/Applications 1 - Homework 5
 Enrique Areyan
 October 7, 2014

Chapter 3, Section 3.3

(10) Suppose that a mouse moves in the maze shown in Figure 3.7 and that observations are made every 5 minutes and every time the mouse moves from one compartment to another. Assume that the mouse remains where it is with probability . 4 and that whenever it has a choice, it is three times as likely to move to a darker compartment as to a ligther one. In the long run, what is the probability that it is in the compartment with low illumination?

Solution: Since the movement of the mouse depends only on the current location, we can model its behavior with a Markov Chain. We will need four states, each for a compartment the mouse might be in. Let D, L, M, H be label for states Dark, Low, Medium and High.

$$
\mathbf{P}=\begin{array}{c||cccc||}
& & \mathrm{D} & \mathrm{~L} & \mathrm{M} \\
\mathrm{D} & 8 / 20 & 12 / 20 & 0 & 0 \\
\mathrm{~L} & 9 / 20 & 8 / 20 & 3 / 20 & 0 \\
\mathrm{M} & 0 & 9 / 20 & 8 / 20 & 3 / 20 \\
\mathrm{H} & 0 & 0 & 12 / 20 & 8 / 20
\end{array}
$$

Note that this is an ergodic chain since all states can communicate with each other, and it is aperiodic since from state D we can go back to D in any number of transitions. Hence, we can solve for the limiting distributing as follow: (here states $0,1,2,3$ refer to states D, L, M, H respectively)

\[

\]

We can write each variable in terms of π_{1} as follow: replace equation 2 in equation $1: 9 \pi_{1}+9 \pi_{2}=12 \pi_{1} \Longrightarrow \pi_{2}=\frac{3}{9} \pi_{1}$, and replace this equation in equation 3: $\pi_{1}=12 \pi_{3} \Longrightarrow \pi_{3}=\frac{1}{12} \pi_{1}$. Now use the normalization equation:

$$
\pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=1 \Longrightarrow \frac{9}{12} \pi_{1}+\pi_{1}+\frac{3}{9} \pi_{1}+\frac{1}{12} \pi_{1}=1 \Longrightarrow\left(\frac{9}{12}+1+\frac{3}{9}+\frac{1}{12}\right) \pi_{1}=1 \Longrightarrow\left(\frac{9 \cdot 22+12 \cdot 3}{108}\right) \pi_{1}=1
$$

Therefore, $\pi_{1}=\frac{108}{198+36}=\frac{108}{234}=\frac{6}{13}$. This states corresponds to the state with low illumination, so in the long run the probability that the mouse is in the compartment with low illumination is given by :

$$
\pi_{1}=\frac{6}{13}
$$

